Modeling the groundwater flow and (lateral) transport

Flow equation

The main features of the groundwater module are:

The model is a multi-layer model. Each layer is modeled horizontally 2-dimensional in a
regularly spaced grid. The coupling between the layers is done using leakage factors.

The uppermost (first) groundwater aquifer is assumed to be unconfined, the lower aquifers can
be confined or unconfined (it is determined by comparing the heads with the upper boundaries of
the layers)

It is possible to use anisotropic conductivities but only in x- and y-direction (without rotated
anisotropy). If a rotation is required, the coordinate system should be rotated.

The connection to surface water is done by leakage approaches within the unsaturated zone
model. It is possible to calculate infiltration from rivers as well as exfiltration into the rivers
(base flow). If the groundwater reaches the surface of the soil, surface runoff is generated (but in
the unsaturated zone model).

The solution of continuity and flux equations is done using an implicit finite difference approach:
Gauss-Seidel-Algorithm with automatic or manual estimation of Successive Over Relaxation
Factors (SOR factors). It is scheduled to implement some faster solving algorithms like PCG into
the model in later versions.

The substance transport is done as a big-cell-approach without considering diffusion. It is
possible to model the substance transport externally by writing all flux fields to external files.

spatial distributed parameters for the groundwater model:

- KX  saturated horizontal conductivity (x-direction), 1 grid each aquifer [m/s]

-KY  saturated horizontal conductivity (y-direction), 1 grid each aquifer [m/s]

- SO specific storage coefficient (S,), 1 grid for each aquifer [m*/m’]

-GK leakage factors for layer interaction, 1 grid for each layer [m™]

-BQ  boundary fluxes (referring to the vertical—> recharge), 1 grid for each layer [m/s]
-BH  constant head boundary, 1 grid for each layer [m a.s.l.]

-AQ  aquifer thickness, 1 grid for each layer [m]

Solving the flux equation

The flux equation is get from the continuity equation and from the DARCY-equation. The change of
the water storage in a control volume 0x-0y during a time O¢ equals the balance of the inflows
into and outflows out of the control volume:

div (T grad h)+q-+1,, (h,,— h)+1,, (,~h)=5, 5" (2.15.1)
with T transmissivity = aquifer thickness [m] times conductivity Ky
(resp. Ky) [m*/s]
h hydraulic head in the control volume[m]
q boundary fluxes perpendicular to the grid cell surface [m/s]
Ly leakage factor for fluxes between the actual and the upper aquifer [s™']
Ny hydraulic head in the upper laying aquifer [m]
Lo leakage factor for fluxes between the actual and the lower aquifer [s™']
hio hydraulic head in the lower laying aquifer [m]
So specific storage coefficient [1/1]
t time [s]

Beside the horizontal fluxes equation (2.15.1) contains also terms for fluxes between aquifers and



the term ¢, which is introduced to consider extractions or additional inputs by wells or recharge. In
case of unconfined conditions in an aquifer below the top aquifer the storage coefficient S, of this
lower layer is replaced automatically with the storage coefficient from the top layer. This presumes
that the other layers use confined values for the storage coefficient whereas for the top aquifer the
effective porosity is given as storage coefficient.

To get a discrete equation, a control volume with discrete cell edges Ax and Ay is defined. Also the
time is made discrete to Az. The following equations use local indices between 0 and 4 according to
the following scheme.

h T hy, Ty head and transmissivity within cell 1
0 flux between cell 0 and cell 1
% h,, T, head and transmissivity within cell 2
Y 0, flux between cell 0 and cell 2
hy, Ty hy, T,
Ay <> ho,To <> hs, T5 head and transmissivity within cell 3
Qs A Q 0; flux between cell 0 and cell 3
< 5 v hs, T4 head and transmissivity within cell 4
Ax s 04 flux between cell 0 and cell 4
hs, T Ax,Ay cell size of the grid in x- and y-direction

If in equation (2.15.1) the leakage term is merged together with the perpendicular inflows and
outflows (including leakage) through the cells surface to the flux Q) and if the divergence of the
fluxes is written as balance of the fluxes through the borders of the control volume than a discrete
flux equation is given by:

At(0,+0,+0,+0,+0,)=[hy(t+A1)—hy(t)]S, A xA y (2.15.2)
with fluxes Q) to O, as

h(t")—h,(t") h(t")—h,(t")
leAXTl,o - A ° szAyTz,o : Axo
sy , , (2.15.3)
_ h3(t )_ho(t ) _ h4(t )_ho(t )
0;=AxT, A 0,=A)yT,,
y Ax

It is assumed that the fluxes during the time step Af can be represented by the fluxes at the time ¢’
(with ¢ < ¢’ < t+Af) and thus by the heads valid at this time. The transmissivities T, to T4 between
the cells 0 and 1, 0 and 2, 0 and 3, and 0 and 4 are averaged as harmonic average of the affected
cells:

7, =il
i0= T+T, (2.15.4)
with i local indices between 1 and 4

Under confined conditions the local transmissivity in a cell is the product of aquifer thickness and
saturated hydraulic conductivity in the matching direction. X- and y-direction may have different
conductivities. Under unconfined conditions the local transmissivity is the product of the effective
aquifer thickness (only the saturated part of the aquifer) and the saturated hydraulic conductivity in
the direction of interest.

The following reformulations presume a regular grid with Ax = Ay what leads to simplifications of
equation (2.15.3). Also the hydraulic heads /' at time ¢’ are expressed by A(f) and A(t+Af):

h(t')=(1—)-h(t)+oh(t+At) (2.15.5)

The parameter « has a range of 0 to 1. If « is set to 0 the solution is done explicitly, if « is set 1 the



solution is fully implicit, values between 0 and 1 will cause a partly implicit solution. Explicit
solutions are fast because the solution is get in a single step but they tend to numerical instabilities
if using long time steps. Implicit solutions can be obtained by using iterative methods or by direct
solutions of the linear equation systems. In WaSiM an iterative scheme, the Gauss-Seidel-Algorithm
is applied. It is simple and fast enough also for very large model grids, because the time critical part
in the model is the unsaturated zone. Usually the model will be applied with time steps of one hour
or one day or even longer time steps, thus the use of the fully implicit approach is strongly
recommended. If there are oscillations between successive time steps the model gives messages
about this in order to allow the user to change some iteration parameters.

If the fluxes from equation (2.15.3) are simplified by Ax/Ay = 1.0 and put into equation (2.15.2) and
if the heads %, (¢") are expressed by equation (2.15.5) the head A(#+A¢?) can be expressed by:
AxAy
A—tSO-hO(tH(F1+F2+F3+F4)—( =)o (6)(T) o+T, o+T5 ¢+T, )
hy(t+At)= (2.15.6)

AZ?yS0+(x-(T1,0+T2’0+T3,0+T4,0)
with
F1:T1,0h1([') F2:T2_oh2(t') F3:T3,oh3(t') F4:T4,oh4(t’) (2.15.7)

Because after a complete step over all grid cells the heads #,(¢') to /,(¢') of the neighboring cells
1 to 4 may have changed, equation (2.15.7) has to be repeatedly processed for the entire grid until
the changes between two iteration steps are nowhere greater than a user-specified threshold &, (of
e.g. 10° m) or until the maximum number of iteration steps 7. has been reached. Both parameters
are specified as global parameters in the control file (global means: they are valid for each cell in
the grid). To avoid to many iteration steps, for confined conditions the error threshold &, is
automatically increased by a factor 50. This is done in order to consider the much larger effect of
very small in- and outflows on the heads compared to unconfined conditions. Thus, a very small
flux which is really unimportant for the balance may very well change the heads by e.g. 0.001 m
under confined conditions whereas the same flux would change the head under unconfined
conditions by e.g. 1le-6 m. Using the Gauss-Seidel iteration scheme it is taken advantage from the
fact, that in each iteration step the heads of the cells 1 and 3 (local indices) are already newly
calculated values which gives better estimations and thus a faster convergence of the solution.

Acceleration of the convergence of the iteration

In order to minimize the errors of the iteration even faster it is possible to use acceleration factors,
the so called successive over relaxation (SOR). Using this method, the differences in the heads
between to iteration steps are multiplied by a SOR-factor. This factor can be specified in the control
file or it can be estimated automatically during the model run by indicating a negative value for the
SOR-factor in the control file. If it is not automatically estimated, the value should be set with care,
because too large values will destabilize the iteration scheme. Manually selected SOR-values
should be between 1.1 and 1.4. If the model starts to oscillate, this is messaged to the user in order
to change also the SOR-factor. In case of an automatic estimation of the SOR-factor the model uses
the heads of the actual and the two last iteration steps to calculate an SOR-factor:

h(t)—h(t—At)

SOR=1+
h(t—At)—h(t—2At)

(2.15.8)

with SOR  acceleration factor (successive over relaxation), limited to 1 < SOR <2 [-]



Leakage between aquifers

Fluxes between different aquifers are considered by a leakage-approach. Using DARCY’s Law the
flux is calculated according to the hydraulic conductivity and the thickness of the assumed clay
layer in-between the aquifers. Because usually both variables are unknown they are replaced by a
leakage factor /:

_k’
=
with / leakage-factor [s™]

k' hydraulic conductivity within the clay layer between the aquifers [m-s™]
d'  thickness of the clay layer in-between the aquifers [m]

! (2.15.9)

The leakage fluxes are calculated according to equation (2.15.1) depending on the head difference
and the leakage factor. The results are fluxes in m/s perpendicular to the grid cell surface.

boundary conditions

It is possible and required to define grids containing boundary conditions. There are two grids for
each aquifer, one containing constant heads and one containing constant fluxes into or out of the
cells. The boundary conditions can be set separately for each grid cell but they are valid during the
entire model run. For cells with a constant head boundary equation (2.15.6) is skipped. Inputs
(positive sign) or extractions (negative sign) are expected in m/s perpendicular to the cell surface. It
is also possible to consider lateral boundary fluxes if they are converted considering the grid cell
size into matching vertical fluxes. It is not possible to consider temporally variable boundary
conditions. Also boundary conditions which are linear combinations of known heads and known
fluxes are not explicitly allowed. However, if both grids (constant flux and constant head) have
valid entries for a cell, then this is a kind of a combined boundary condition. Such combinations
may lead to serious problems with the water balance especially if the hydraulic properties do not
match the boundary conditions (too much extraction/inflow and at the same time a fixed head —
problems with the balance).

Balance for the I* aquifer for coupling the unsaturated zone to the groundwater model

The balance of inflows and outflows across the cell boundaries (all six surfaces including ceiling
and floor) is converted into an effective rate of change of the groundwater table in terms of water
flux. Thus the model of the unsaturated zone gets information about the change of the groundwater
table for inclusion into it’s algorithms. The rate of change of the groundwater table is estimated by:

AGW:h(z—At)—h(t)
At

S, (2.15.10)

with Agw rate of change of the groundwater table in terms of a vertical water flux [m-s™]
h(t-At) groundwater head in the previous time step [m]
h(t) groundwater head at the end of the actual time step [m]
So specific storage coefficient [-]
At time step [s]

Substance transport in the groundwater

The exchange of tracers between unsaturated zone and groundwater and the mixing is considered in
the unsaturated zone module. The flux between the last completely unsaturated zone and the
groundwater is taken as recharge (or uptake) transporting with it an amount of tracers matching the
concentrations of this tracers in the place of the origin of the fluxes. For capillary rise this solute
amount is the product of the upwards flow and the concentration of the solute in the groundwater.

Within the groundwater the transport of solutes is estimated using the lateral fluxes and the solute



concentrations in their origin cells. The vertical fluxes are handled in analogy to the horizontal
fluxes. After calculating the water fluxes, the corresponding masses of transported tracers are
calculated. The balance of mass inflows and outflows with the old tracer content of the cell (all
units in 10°kg or in relative units) is divided by the new water content to get the new tracer
concentration:

Co<t+A t)zco(t)'A X'Ay'n'd+Q1'cluo<t)+Q2'Czu0(t>+Q3'c3u0(t)+Q4'c4uo(f)

2.15.11
+Q”P.Cupu0(t)+Qlo'cupU0(Z)+Q0'CO(I) ( )
with n porosity [-]
d aquifer thickness (confined aquifer) resp. effective aquifer thickness

(unconfined aquifer) [m]

Ciuo .. Caup tracer concentrations in the four neighboring cells; depending on the flow
direction this may be the central cell (index 0) or one of the neighboring
cells (indices 1 to 4), units [10°kg/m’] or relative concentrations

Cupn tracer concentrations within the actual or the upper laying aquifer,
depending on the flow direction (only if there is an aquifer above, else 0),
units like c;...c4

Clown tracer concentrations within the actual or the lower laying aquifer,
depending on the flow direction (only if there is an aquifer below, else 0),
units like ¢;._ca

Co tracer concentrations in boundary inflows (unimportant for extractions
because no concentration changes), units like c...cs

O ... Qs fluxes between the cells 1...4 and the actual cell (index 0) [m’]

O O leakage fluxes, if upper (up) or lower (lo) aquifers are present [m?]

0o boundary flux [m’]

The fluxes Q; to Q4 in equation (2.15.11) are given by:

hy—h, d,+d,
Q,=kg Ay Ax-At- >
hy—h, d,+d,
Ot AT 2.15.12
hy— I, d,+d, (2.15.12)
Q3:kS,3 Ay -Ax.At.T
Q4:ks,4A—x'Ay'Af' 5

with ks ... ks4 saturated lateral hydraulic conductivity in the neighboring cells [m/s]
ho ... hy  hydraulic heads in the cells 0 to 4 [m]
do...ds  effective thickness of the aquifers in cells 0 to 4

The amount of water within the actual cell which is needed for equation (2.15.11) may be get as
balance of the old water content and the inflows and outflows or it may be estimated from the
hydraulic head at the end of the time step. If the latter value differs from the first one, the mass
fluxes are reduced to the latter one. Thus numerical errors caused by the use of local hydraulic
conductivities can be avoided as well as the tracer balance is hold.

balance check when using boundary conditions

When using boundary conditions in the groundwater model, the balance of fluxes and storage
changes (which is the basic principle of a groundwater model) will be disturbed. WaSiM deals with
boundary conditions in two ways:



1) constant head boundaries: the cell is excluded from the Gauss-Seidel-Algorithm because the
hydraulic head doesn't have to be calculated for each time step (it is constant...)

2) constant flux boundaries: the constant flux is added as additional inflow during the execution of
the Gauss-Seidel-Algorithm like leakages from above or below. However, Leakages are
implicitly accounted for in the balances, because those amounts of water will internally be
transferred from one layer to the other layer. Constant flux boundaries on the other hand, are
additional terms which must be accounted in the balance-checksum grid.

In both cases, the initial groundwater table will be taken from the unsaturated zone model.
Boundary conditions are then applied on top of this table. Thus, there will be balance differences
after the Gauss-Seidel-Algorithm for constant head boundaries (because the fluxes are calculated
but the head remains constant) and for constant flux boundaries (because the additional flux will
lead to an additional change in hydraulic heads which cannot be compensated by the lateral fluxes).

The mass conservation approach of the groundwater model is:

div(T-graa’(h))+q+lup-(hup—h)+l,o-(h,o—h):SO% (2.15.13)

where 7 transmissivity = aquifer thickness [m] times conductivity K (resp. Ky) [mz/s]

h hydraulic head in the control volume[m]

q boundary fluxes perpendicular to the grid cell surface [m/s]

lup leakage factor for fluxes between the actual and the upper aquifer [s1]
hup hydraulic head in the upper laying aquifer [m]

l,, leakage factor for fluxes between the actual and the lower aquifer [s'l]
h,, hydraulic head in the lower laying aquifer [m]

S,  specific storage coefficient [1/1]

t time [s]

When solving this equation numerically (see groundwater model description), the values of 4 are
recalculated for each time step. As described above, the boundary conditions will disturb either the
left side of the above equation (constant fluxes) or the right side (by keeping the change in storage
constant due to constant heads).

The groundwater balance check grid uses these deviations to identify the impact of boundary
conditions on the total balance. For each cell, after each time step, the difference between the
regular fluxes and the change in storage are calculated and written to a balance-grid:

The above equation in discrete form can be expressed as:

At(Q+0,+0,+0,|=[hy(t+At)—hy(t)]S,Ax Ay (2.15.14)

For explanation of the entities please refer to the WaSiM description (groundwater model). When
the Gauss-Seidel-Algorithm is finished, both sides should be equal, so the term

balance=|hy(t+A1)=hy(1)|SAx A y—At{0,+0,+05+0,) (2.15.15)

should be near to 0 (only very small numerical uncertainties will occur). Note: constant flux
boundaries are already taken into account by the new #hyp-value whereas the fluxes Q...0s are
calculated based on the heads at the beginning of the interval (without accounting for additional
input or output). As can be seen by the above equation, a constant head boundary will cause the left
term to be equal to 0 (because ho(t+A4¢t) = ho(f)) , only the sum of fluxes remains. Thus, if the sum of
all fluxes is negative (water is flowing out of the cell because constant head is higher than



neighbouring cells' head), the balance will be positive and vice versa.

For constant flux boundaries, on the other hand, the term [/Ao(t+A4¢t) — ho(1)]SedxAy will be larger or
smaller than the right term A#«(Q+0,+0;+0.) (because boundary fluxes where added to the head in
the Gauss-Seidel-algorithm). Thus, additional inflows (infiltrating water = positive constant flux
boundary) will lead to positive balances, additional outflows (pumping = negative constant flux
boundary) will lead to a negative balance.

Both boundary conditions could be used in the same model and even in the same cell — their effects
on the balance are superposed and written to the balance grid. However: The balance grid will
contain the actual value only. To get the total balance for longer time periods, the mechanisms of
WaSiM for calculating sum grids must be used.

The setup of the balance grid is simple: The control file must contain a new output grid and a new
write grid code, which should be either 13 (sum grid and actual grid will be written at model end) or
some other combination of summing up values and writing the last grid (like e.g. 23 for sum grids
for every model year).

Example for the extended control file:

groundwater flow]

1 # O=ignore the module, 1 = run the module

Stime # duration of a time step in minutes

1 # solving method: l=Gauss-Seidel-iteration

1000 # max.numberof iterations

0.000001 # max. changes between two iterations

0.0 # Alpha for estimation of central differences 0.5 =
# Crank-Nicholson Method, 0 = fully explicite, 1 =
# fully implicite

-1.20 # factor for relaxing the iteration if using
Sreadgrids # l=read grids for heads from disk,

2 # number of layers

25 68 # coordinates of a control point for all fluxes

Soutpath//glog//S$grid//.//$Syear # name of a file containing the flows
# between of the control point

1 use Pond Grid

#
Soutpath//$headlgrid # (new) grid for hydraulic heads for layer 1
SWritegrid # writecode for hydraulic heads for layer 1
Soutpath//$flowxlgrid # (new) grid for fluxes in x direction for layer 1
SWritegrid # writecode for flux-x-grid in layer 1
Soutpath//$flowylgrid # (new) grid for fluxes in y direction for layer 1
#

SWritegrid writecode for flux-y-grid in layer 1
$outpath//$GWbalancelgrid # (new) grid for balance (difference of storage change
# vs. balance of fluxes -> should be 0 or the amount

# of in-/outflows by boundary conditions

13 # writecode for balance control grid in layer 1 (should
# be at least one sum grid per year --> Code = 20 or 23 (if old grids must be

# read in)

Soutpath//$head2grid # (new) grid for hydraulic heads for layer 2
SWritegrid # writecode for hydraulic heads for layer 2
Soutpath//$flowx2grid # (new) grid for fluxes in x direction for layer 2
SWritegrid # writecode for flux-x-grid in layer 2
Soutpath//$flowy2grid # (new) grid for fluxes in y direction for layer 2
SWritegrid # writecode for flux-y-grid in layer 2

Soutpath//$GWbalance2grid # (new) grid for balance (difference of storage change
# vs. balance of fluxes -> should be 0 or the amount of in-/outflows by boundary
# conditions

13 # writecode for balance control grid in layer 2 (should
# be at least one sum grid per year --> Code = 20 or 23 (if old grids must be

# read in)

The balance grid contains balance values in mm in order to be compatible with all the other grids
and statistical output. To calculate a balance over a model run, simply add the average value of this
grid to the other balance terms like precipitation, runoff, evaporation, change in soil moisture,
change in snow and interception storage change in lake content etc.
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