
Modeling the groundwater flow and (lateral) transport

Flow equation

The main features of the groundwater module are:

 The  model  is  a  multi-layer  model.  Each  layer  is  modeled  horizontally  2-dimensional  in  a 
regularly spaced grid. The coupling between the layers is done using leakage factors.

 The uppermost (first) groundwater aquifer is assumed to be unconfined, the lower aquifers can 
be confined or unconfined (it is determined by comparing the heads with the upper boundaries of 
the layers)

 It is possible to use anisotropic conductivities but only in x- and y-direction (without rotated 
anisotropy). If a rotation is required, the coordinate system should be rotated.

 The connection to surface water is  done by leakage approaches within the unsaturated zone 
model. It is possible to calculate infiltration from rivers as well as exfiltration into the rivers 
(base flow). If the groundwater reaches the surface of the soil, surface runoff is generated (but in 
the unsaturated zone model).

 The solution of continuity and flux equations is done using an implicit finite difference approach: 
Gauss-Seidel-Algorithm with automatic  or  manual  estimation of  Successive Over  Relaxation 
Factors (SOR factors). It is scheduled to implement some faster solving algorithms like PCG into 
the model in later versions.

 The  substance  transport  is  done  as  a  big-cell-approach  without  considering  diffusion.  It  is 
possible to model the substance transport externally by writing all flux fields to external files.

 spatial distributed parameters for the groundwater model:
- KX saturated horizontal conductivity (x-direction), 1 grid each aquifer [m/s]
- KY saturated horizontal conductivity (y-direction), 1 grid each aquifer [m/s]
- S0 specific storage coefficient (S0), 1 grid for each aquifer [m3/m3]
- GK leakage factors for layer interaction, 1 grid for each layer [m-1]
- BQ boundary fluxes (referring to the vertical recharge), 1 grid  for each layer [m/s]
- BH constant head boundary, 1 grid for each layer [m a.s.l.]
- AQ aquifer thickness, 1 grid for each layer [m]

Solving the flux equation

The flux equation is get from the continuity equation and from the DARCY-equation. The change of 
the water storage in a control volume ∂ x⋅∂ y  during a time ∂ t  equals the balance of the inflows 
into and outflows out of the control volume:

div T grad h qluphup−hl lo hlo−h=S 0

∂h
∂ t

(2.15.1)

with T transmissivity = aquifer thickness [m] times conductivity KX 
(resp. KY) [m2/s]

h hydraulic head in the control volume[m]
q boundary fluxes perpendicular to the grid cell surface [m/s]
lup leakage factor for fluxes between the actual and the upper aquifer [s-1]
hup hydraulic head in the upper laying aquifer [m]
llo leakage factor for fluxes between the actual and the lower aquifer [s-1]
hlo hydraulic head in the lower laying aquifer [m]
S0 specific storage coefficient [1/1]
t time [s]

Beside the horizontal fluxes equation (2.15.1) contains also terms for fluxes between aquifers and 



the term q, which is introduced to consider extractions or additional inputs by wells or recharge. In 
case of unconfined conditions in an aquifer below the top aquifer the storage coefficient S0 of this 
lower layer is replaced automatically with the storage coefficient from the top layer. This presumes 
that the other layers use confined values for the storage coefficient whereas for the top aquifer the 
effective porosity is given as storage coefficient.

To get a discrete equation, a control volume with discrete cell edges x and y is defined. Also the 
time is made discrete to t. The following equations use local indices between 0 and 4 according to 
the following scheme.

h1,T1

Q1

h2,T2

Q2

h0,T0

Q3

h3,T3

h4, T4

Q4

 h1, T1 head and transmissivity within cell 1
 Q1 flux between cell 0 and cell 1

 h2, T2 head and transmissivity within cell 2
 Q2 flux between cell 0 and cell 2

 h3, T3 head and transmissivity within cell 3
 Q3 flux between cell 0 and cell 3

 h4, T4 head and transmissivity within cell 4
 Q4 flux between cell 0 and cell 4
 x,y cell size of the grid in x- and y-direction

y

x

If  in  equation  (2.15.1) the leakage term is  merged together with the perpendicular  inflows and 
outflows (including leakage) through the cells surface to the flux  Q0

 and if the divergence of the 
fluxes is written as balance of the fluxes through the borders of the control volume than a discrete 
flux equation is given by:

 t Q1Q2Q3Q4Q0 =[h0t t −h0t ]S 0 x y (2.15.2)

with fluxes Q1 to Q4 as

Q1= xT 1 , 0

h1 t ' −h0 t ' 

 y
Q2= yT 2 ,0

h2 t ' −h0 t ' 

 x

Q3= xT 3 , 0

h3 t ' −h0 t ' 

 y
Q4= yT 4 ,0

h4 t ' −h0 t ' 

 x

(2.15.3)

It is assumed that the fluxes during the time step t can be represented by the fluxes at the time t 
(with t  t   t+t) and thus by the heads valid at this time. The transmissivities T1,0 to T4,0 between 
the cells 0 and 1, 0 and 2, 0 and 3, and 0 and 4 are averaged as harmonic average of the affected 
cells:

T i ,0=2
T i T 0

T iT 0
(2.15.4)

with i local indices between 1 and 4 

Under confined conditions the local transmissivity in a cell is the product of aquifer thickness and 
saturated hydraulic conductivity in the matching direction. X- and y-direction may have different 
conductivities. Under unconfined conditions the local transmissivity is the product of the effective 
aquifer thickness (only the saturated part of the aquifer) and the saturated hydraulic conductivity in 
the direction of interest.

The following reformulations presume a regular grid with x = y what leads to simplifications of 
equation (2.15.3). Also the hydraulic heads h at time t  are expressed by h(t) and h(t+t): 

h  t ' =1−⋅h t ⋅h t t  (2.15.5)

The parameter  has a range of 0 to 1. If  is set to 0 the solution is done explicitly, if  is set 1 the 



solution is  fully implicit,  values between 0 and 1 will  cause a partly implicit  solution.  Explicit 
solutions are fast because the solution is get in a single step but they tend to numerical instabilities 
if using long time steps. Implicit solutions can be obtained by using iterative methods or by direct 
solutions of the linear equation systems. In WaSiM an iterative scheme, the Gauss-Seidel-Algorithm 
is applied. It is simple and fast enough also for very large model grids, because the time critical part 
in the model is the unsaturated zone. Usually the model will be applied with time steps of one hour  
or  one  day or  even  longer  time  steps,  thus  the  use  of  the  fully  implicit  approach  is  strongly 
recommended. If there are oscillations between successive time steps the model gives messages 
about this in order to allow the user to change some iteration parameters. 

If the fluxes from equation (2.15.3) are simplified by x/y = 1.0 and put into equation (2.15.2) and 
if the heads )(0 th  are expressed by equation (2.15.5) the head h0(t+t) can be expressed by:

h0  t t =

 x  y
 t

S 0⋅h0  t  F 1F 2F 3F 4 −1−⋅h0  t ⋅T 1 ,0T 2 ,0T 3 ,0T 4 ,0 

 x  y
 t

S 0⋅T 1 ,0T 2 ,0T 3 ,0T 4 ,0 
(2.15.6)

with

F 1=T 1 , 0 h1 t '  F 2=T 2 , 0 h2 t '  F 3=T 3 ,0 h3 t '  F 4=T 4 ,0 h4 t '  (2.15.7)

Because after a complete step over all grid cells the heads h1  t '  to h4  t '  of the neighboring cells 
1 to 4 may have changed, equation (2.15.7) has to be repeatedly processed for the entire grid until 
the changes between two iteration steps are nowhere greater than a user-specified threshold max (of 
e.g. 10-5 m) or until the maximum number of iteration steps niter has been reached. Both parameters 
are specified as global parameters in the control file (global means: they are valid for each cell in 
the  grid).  To  avoid  to  many iteration  steps,  for  confined  conditions  the  error  threshold  max is 
automatically increased by a factor 50. This is done in order to consider the much larger effect of 
very small in- and outflows on the heads compared to unconfined conditions. Thus, a very small 
flux which is really unimportant for the balance may very well change the heads by e.g. 0.001 m 
under  confined  conditions  whereas  the  same  flux  would  change  the  head  under  unconfined 
conditions by e.g. 1e-6 m. Using the Gauss-Seidel iteration scheme it is taken advantage from the 
fact, that in each iteration step the heads of the cells 1 and 3 (local indices) are already newly 
calculated values which gives better estimations and thus a faster convergence of the solution.

Acceleration of the convergence of the iteration

In order to minimize the errors of the iteration even faster it is possible to use acceleration factors, 
the so called successive over relaxation (SOR). Using this method, the differences in the heads 
between to iteration steps are multiplied by a SOR-factor. This factor can be specified in the control 
file or it can be estimated automatically during the model run by indicating a negative value for the 
SOR-factor in the control file. If it is not automatically estimated, the value should be set with care,  
because  too  large  values  will  destabilize  the  iteration  scheme.  Manually  selected  SOR-values 
should be between 1.1 and 1.4. If the model starts to oscillate, this is messaged to the user in order  
to change also the SOR-factor. In case of an automatic estimation of the SOR-factor the model uses 
the heads of the actual and the two last iteration steps to calculate an SOR-factor:

SOR=1
h t −h  t− t 

h t− t −h t−2 t 
(2.15.8)

with SOR acceleration factor (successive over relaxation), limited to 1  SOR  2 [-]



Leakage between aquifers

Fluxes between different aquifers are considered by a leakage-approach. Using DARCY’s Law the 
flux is calculated according to the hydraulic conductivity and the thickness of the assumed clay 
layer in-between the aquifers. Because usually both variables are unknown they are replaced by a 
leakage factor l:

l=
k '
d '

(2.15.9)

with l leakage-factor [s-1]
k' hydraulic conductivity within the clay layer between the aquifers [ms-1]
d' thickness of the clay layer in-between the aquifers [m]

The leakage fluxes are calculated according to equation (2.15.1) depending on the head difference 
and the leakage factor. The results are fluxes in m/s perpendicular to the grid cell surface.

boundary conditions

It is possible and required to define grids containing boundary conditions. There are two grids for 
each aquifer, one containing constant heads and one containing constant fluxes into or out of the 
cells. The boundary conditions can be set separately for each grid cell but they are valid during the 
entire  model  run.  For cells  with a  constant  head boundary equation  (2.15.6) is  skipped.  Inputs 
(positive sign) or extractions (negative sign) are expected in m/s perpendicular to the cell surface. It  
is also possible to consider lateral boundary fluxes if they are converted considering the grid cell 
size  into  matching  vertical  fluxes.  It  is  not  possible  to  consider  temporally  variable  boundary 
conditions. Also boundary conditions which are linear combinations of known heads and known 
fluxes are not explicitly allowed. However, if both grids (constant flux and constant head) have 
valid entries for a cell, then this is a kind of a combined boundary condition. Such combinations 
may lead to serious problems with the water balance especially if the hydraulic properties do not 
match the boundary conditions (too much extraction/inflow and at the same time a fixed head  
problems with the balance).

Balance for the 1st aquifer for coupling the unsaturated zone to the groundwater model

The balance of inflows and outflows across the cell boundaries (all six surfaces including ceiling 
and floor) is converted into an effective rate of change of the groundwater table in terms of water  
flux. Thus the model of the unsaturated zone gets information about the change of the groundwater 
table for inclusion into it’s algorithms. The rate of change of the groundwater table is estimated by:

GW =
h t− t −h t 

 t
S0 (2.15.10)

with GW rate of change of the groundwater table in terms of a vertical water flux [ms-1]
h(t-t) groundwater head in the previous time step [m]
h(t) groundwater head at the end of the actual time step [m]
S0 specific storage coefficient [-]
t time step [s]

Substance transport in the groundwater

The exchange of tracers between unsaturated zone and groundwater and the mixing is considered in 
the  unsaturated  zone  module.  The  flux  between  the  last  completely  unsaturated  zone  and  the 
groundwater is taken as recharge (or uptake) transporting with it an amount of tracers matching the 
concentrations of this tracers in the place of the origin of the fluxes. For capillary rise this solute 
amount is the product of the upwards flow and the concentration of the solute in the groundwater. 

Within the groundwater the transport of solutes is estimated using the lateral fluxes and the solute 



concentrations in their  origin cells. The vertical fluxes are handled in analogy to the horizontal  
fluxes.  After  calculating  the  water  fluxes,  the  corresponding  masses  of  transported  tracers  are 
calculated. The balance of mass inflows and outflows with the old tracer content of the cell (all 
units  in  103kg or  in  relative  units)  is  divided by the  new water  content  to  get  the  new tracer  
concentration:

c0 t t =c0 t ⋅ x⋅ y⋅n⋅dQ1⋅c1∪0t Q2⋅c2∪0 t Q3⋅c3∪0 t Q4⋅c4∪0 t 
Qup⋅cup∪0t Qlo⋅cup∪0 t Q0⋅c0 t 

(2.15.11)

with n porosity [-]
d aquifer thickness (confined aquifer) resp. effective aquifer thickness

(unconfined aquifer) [m]
c10 … c40 tracer concentrations in the four neighboring cells; depending on the flow 

direction this may be the central cell (index 0) or one of the neighboring
cells (indices 1 to 4), units [103kg/m3] or relative concentrations

cup0 tracer concentrations within the actual or the upper laying aquifer,
depending on the flow direction (only if there is an aquifer above, else 0),
units like c1...c4

clo0 tracer concentrations within the actual or the lower laying aquifer,
depending on the flow direction (only if there is an aquifer below, else 0),
units like c1…c4

c0 tracer concentrations in boundary inflows (unimportant for extractions
because no concentration changes), units like c1...c4

Q1 … Q4 fluxes between the cells 1…4 and the actual cell (index 0) [m3]
Qup, Qlo leakage fluxes, if upper (up) or lower (lo) aquifers are present [m3]
Q0 boundary flux [m3]

The fluxes Q1 to Q4 in equation (2.15.11) are given by:

Q1=k S ,1

h0−h1

 y
⋅ x⋅ t⋅

d 0d 1

2

Q2=k S ,2

h0−h2

 x
⋅ y⋅ t⋅

d 0d 2

2

Q3=k S ,3

h0−h3

 y
⋅ x⋅ t⋅

d 0d 3

2

Q4=k S ,4

h0−h4

 x
⋅ y⋅ t⋅

d 0d 4

2

(2.15.12)

with kS,1 … kS,4 saturated lateral hydraulic conductivity in the neighboring cells [m/s]
h0 … h4 hydraulic heads in the cells 0 to 4 [m]
d0 … d4 effective thickness of the aquifers in cells 0 to 4

The amount of water within the actual cell which is needed for equation  (2.15.11) may be get as 
balance of the old water content and the inflows and outflows or it may be estimated from the 
hydraulic head at the end of the time step. If the latter value differs from the first one, the mass  
fluxes are reduced to the latter one. Thus numerical errors caused by the use of local hydraulic 
conductivities can be avoided as well as the tracer balance is hold.

balance check when using boundary conditions

When using  boundary conditions  in  the  groundwater  model,  the  balance  of  fluxes  and storage 
changes (which is the basic principle of a groundwater model) will be disturbed. WaSiM deals with 
boundary conditions in two ways: 



1) constant head boundaries: the cell is excluded from the Gauss-Seidel-Algorithm because the 
hydraulic head doesn't have to be calculated for each time step (it is constant...)

2) constant flux boundaries: the constant flux is added as additional inflow during the execution of 
the  Gauss-Seidel-Algorithm  like  leakages  from  above  or  below.  However,  Leakages  are 
implicitly accounted for in  the balances,  because those amounts  of water  will  internally be 
transferred from one layer to the other layer. Constant flux boundaries on the other hand, are 
additional terms which must be accounted in the balance-checksum grid.

In  both  cases,  the  initial  groundwater  table  will  be  taken  from  the  unsaturated  zone  model. 
Boundary conditions are then applied on top of this table. Thus, there will be balance differences 
after the Gauss-Seidel-Algorithm for constant head boundaries (because the fluxes are calculated 
but the head remains constant)  and for constant flux boundaries (because the additional flux will 
lead to an additional change in hydraulic heads which cannot be compensated by the lateral fluxes).

The mass conservation approach of the groundwater model is:

div T⋅grad hql up⋅hup−hllo⋅hlo−h=S 0
 h
 t

(2.15.13)

where T transmissivity = aquifer thickness [m] times conductivity KX (resp. KY) [m2/s]

h hydraulic head in the control volume[m]
q boundary fluxes perpendicular to the grid cell surface [m/s]
lup leakage factor for fluxes between the actual and the upper aquifer [s-1]

hup hydraulic head in the upper laying aquifer [m]

llo leakage factor for fluxes between the actual and the lower aquifer [s-1]

hlo hydraulic head in the lower laying aquifer [m]

S0 specific storage coefficient [1/1]

t time [s]

When solving this equation numerically (see groundwater model description), the values of  h are 
recalculated for each time step. As described above, the boundary conditions will disturb either the 
left side of the above equation (constant fluxes) or the right side (by keeping the change in storage 
constant due to constant heads).

The  groundwater  balance  check  grid  uses  these  deviations  to  identify the  impact  of  boundary 
conditions on the total  balance.  For each cell,  after  each time step,  the difference between the 
regular fluxes and the change in storage are calculated and written to a balance-grid:

The above equation in discrete form can be expressed as:

Δ t (Q 1+Q 2+Q3+Q4)=[h0(t+Δ t)−h0(t )]S 0 Δ x Δ y (2.15.14)

For explanation of the entities please refer to the WaSiM description (groundwater model). When 
the Gauss-Seidel-Algorithm is finished, both sides should be equal, so the term 

balance=[h0t t −h0t ] S 0 x  y− t Q1Q2Q3Q 4  (2.15.15)

should  be  near  to  0  (only  very small  numerical  uncertainties  will  occur).  Note:  constant  flux 
boundaries  are  already taken  into  account  by the  new  h0-value  whereas  the  fluxes  Q0...Q4  are 
calculated based on the heads at the beginning of the interval (without accounting for additional 
input or output). As can be seen by the above equation, a constant head boundary will cause the left 
term to be equal to 0 (because h0(t+Δt) = h0(t)) , only the sum of fluxes remains. Thus, if the sum of 
all  fluxes  is  negative  (water  is  flowing  out  of  the  cell  because  constant  head  is  higher  than 



neighbouring cells' head), the balance will be positive and vice versa.

For constant flux boundaries, on the other hand, the term [h0(t+Δt) – h0(t)]S0ΔxΔy will be larger or 
smaller than the right term Δt(Q1+Q2+Q3+Q4) (because boundary fluxes where added to the head in 
the Gauss-Seidel-algorithm). Thus, additional inflows (infiltrating water = positive constant flux 
boundary) will lead to positive balances, additional outflows (pumping = negative constant flux 
boundary) will lead to a negative balance.

Both boundary conditions could be used in the same model and even in the same cell – their effects 
on the balance are superposed and written to the balance grid.  However:  The balance grid will 
contain the actual value only. To get the total balance for longer time periods, the mechanisms of 
WaSiM for calculating sum grids must be used. 

The setup of the balance grid is simple: The control file must contain a new output grid and a new 
write grid code, which should be either 13 (sum grid and actual grid will be written at model end) or 
some other combination of summing up values and writing the last grid (like e.g. 23 for sum grids  
for every model year).

Example for the extended control file:

groundwater_flow]
1                        # 0=ignore the module, 1 = run the module
$time                    # duration of a time step in minutes
1                        # solving method: 1=Gauss-Seidel-iteration 
1000                     # max.numberof iterations
0.000001                 # max. changes between two iterations
0.0                      # Alpha for estimation of central differences 0.5 = 
# Crank-Nicholson Method, 0 = fully explicite, 1 =
# fully implicite
-1.20                    # factor for relaxing the iteration if using 
$readgrids               # 1=read grids for heads from disk, 
2                        # number of layers 
25 68                    # coordinates of a control point for all fluxes 
$outpath//glog//$grid//.//$year  # name of a file containing the flows

     # between of the control point
1                        # use Pond Grid
$outpath//$head1grid     # (new) grid for hydraulic heads for layer 1
$Writegrid               # writecode for hydraulic heads for layer 1
$outpath//$flowx1grid    # (new) grid for fluxes in x direction for layer 1
$Writegrid               # writecode for flux-x-grid in layer 1
$outpath//$flowy1grid    # (new) grid for fluxes in y direction for layer 1
$Writegrid               # writecode for flux-y-grid in layer 1
$outpath//$GWbalance1grid # (new) grid for balance (difference of storage change
# vs. balance of fluxes -> should be 0 or the amount
# of in-/outflows by boundary conditions
13                       # writecode for balance control grid in layer 1 (should
# be at least one sum grid per year --> Code = 20 or 23 (if old grids must be
# read in)
$outpath//$head2grid     # (new) grid for hydraulic heads for layer 2
$Writegrid               # writecode for hydraulic heads for layer 2
$outpath//$flowx2grid    # (new) grid for fluxes in x direction for layer 2
$Writegrid               # writecode for flux-x-grid in layer 2
$outpath//$flowy2grid    # (new) grid for fluxes in y direction for layer 2
$Writegrid               # writecode for flux-y-grid in layer 2
$outpath//$GWbalance2grid # (new) grid for balance (difference of storage change
# vs. balance of fluxes -> should be 0 or the amount of in-/outflows by boundary
# conditions
13                       # writecode for balance control grid in layer 2 (should
# be at least one sum grid per year --> Code = 20 or 23 (if old grids must be
# read in)

The balance grid contains balance values in mm in order to be compatible with all the other grids 
and statistical output. To calculate a balance over a model run, simply add the average value of this 
grid to  the other  balance  terms like precipitation,  runoff,  evaporation,  change in  soil  moisture, 
change in snow and interception storage change in lake content etc.
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